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Fluency is an important aspect of mathematics learning and plays a major role in developing 
proficiency as students are required to use skills and apply knowledge. This paper draws upon 
findings from a large project that aimed to explore primary students’ mathematical fluency. 
Data from 160 primary students (K-6) from a NSW Departmental school were analysed as 
part of a process to test the efficacy of a Fluency Framework. Results showed that students 
displayed the proposed characteristics suggested in the framework and that similar 
characteristics were observed across all grades. These results indicate that the framework, 
once refined, will be an effective tool for teachers to use in identifying students’ fluency.  

Students’ fluency with basic number facts and mathematical procedures has long been a 
focus in primary classrooms and related teaching resources. The term procedural fluency 
used by Kilpatrick, Swafford and Findell (2001) can however be problematic when 
interpreted as simply being able to follow a set formula or to compute mathematics quickly. 
Kilpatrick et al. (2001) recognised this issue affirming that “one of the most serious and 
persistent problems facing school mathematics in the United States is the tendency to 
concentrate on one strand of proficiency to the exclusion of the rest” (p. 11). When 
procedural fluency is focused on in isolation from the underlying conceptual understanding 
it can be detrimental to a student’s skill and knowledge development in mathematics. The 
importance of the relationship between procedural fluency and other aspects of mathematical 
proficiency is also emphasised by Kilpatrick et al. (2001) who indicate that “as a child gains 
conceptual understanding, computational procedures are remembered better and used more 
flexibly to solve new problems” (p. 134). Foster (2017) stated that the “development of 
robust fluency with mathematical procedures” is a current focus of the UK national 
curriculum “developing procedural fluency and conceptual understanding” simultaneously 
(p. 122). When exploring the conceptualisation of procedural fluency, Graven and Stott 
(2012) found that “where flexibility and efficiency were high, conceptual understanding was 
progressively intertwined with procedural fluency and the distinction between these strands 
became increasingly murky” (p. 6).  

A broader interpretation of fluency is important so teachers can build students’ fluency 
not only in procedural knowledge, but also in understanding and in their use of appropriate 
strategies. Mathematical fluency involves carrying out procedures flexibly, accurately, 
efficiently and appropriately as well as having “factual knowledge and concepts that come 
to mind readily” (Watson & Sullivan, 2008, p. 112). For the remainder of this paper the term 
‘fluency’ is in reference to the broader term, mathematical fluency, unless otherwise 
indicated. Watson and Sullivan’s (2008) definition combines both the ability to perform the 
mechanics of mathematics (procedural) and the understanding of the mathematics being 
learned (conceptual). Even though fluency is placed at the centre of the Australian 
curriculum (Australian Curriculum, Assessment and Reporting Authority [ACARA], 2015) 
as a necessary aspect of students’ mathematical development, little research exists that 
specifically observes students’ mathematical fluency beyond procedural knowledge. 
Previous research studies have focused on procedural fluency with number and assess 
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procedural fluency through the use of time-restricted testing (Miller & Heward, 1992; Stott, 
2013). A shift is required to focus not only on mathematical content such as number facts, 
but also on the mathematical processes that aid fluency. This thinking is consistent with 
Star’s (2005) comments surrounding procedural and conceptual knowledge: 

Methods for assessing students' procedural knowledge are somewhat impoverished at present, with 
procedural knowledge often measured simply by what a student can or cannot do. Research methods 
can instead focus on how students can and cannot do and on the character of the knowledge they have 
(including its depth), which supports their ability to perform procedures (p. 8). 

Mathematical fluency involves students’ abilities to use procedures flexibly and 
appropriately indicating a need for decision making and choice. These features are generally 
not analysed in existing research regarding fluency, where the attention is on the accuracy 
and efficiency of answers (Dole, Carmichael, Thiele, Simpson, & O'Toole, 2018; Gallagher, 
2006; Mong & Mong, 2010). Further research is needed surrounding students’ choice and 
use of their knowledge as an indicator of fluency. Hopkins and Bayliss’ (2017) research 
discusses the importance of student choice of strategy to solve number tasks with confidence 
and accuracy. To observe mathematical fluency, extending choice to include decision 
making of not only the strategy but the numerical operation/s is required.  

The aim of this paper is to provide evidence of the efficacy of the proposed fluency 
Framework. The research questions for this study are: Which of the proposed characteristics 
of mathematical fluency are observable in students’ work samples (written and verbal)? and 
What, if any, additional characteristics of mathematical fluency are observable?  

Conceptual Framework  
The objective of the current study was to validate and refine the Characteristics of 

Fluency Framework (Table 1) to advance knowledge of mathematical fluency through the 
exemplification of each characteristic theorised. The Framework comprises the teacher-
reported characteristics that emerged as themes from teachers’ descriptions of what 
mathematical fluency looked like in their students (Cartwright, 2018). It is critical that the 
characteristics be observed in students to validate the Framework if it is to be utilised by 
teachers. The development of a stable, illustrated set of characteristics will be a significant 
contribution to current research in mathematics. The Framework will provide teachers with 
identified aspects of student fluency that may need strengthening or extending through 
appropriate teaching instruction. 
Table 1  
Characteristics of Fluency Framework (Cartwright, 2018) 

Strategic competence Conceptual understanding Adaptive reasoning 

Multiple strategies 
Variety of strategies/ ways 
Choice of/ identification of 
appropriate strategy 
Accurate process (articulation) 
(Ease of) mechanics- automaticity 
Fluidity (switch between 
strategies) 

Comprehension 
Making connections between 
concepts (known to unknown) 
Flexible use of numbers and their 
relationships 
Explanation of method (the how) 
Sharing strategies [with peers] 
(communicate) 

Justifying strategy or method 
(the why) 
Transfer to other contexts or 
problems (application into new 
situations) 
Self-checking method 
(reasonableness) 
Working through errors 

The Study 
The overarching purpose of the research project is to investigate the characteristics of 

mathematical fluency students display, exploring which characteristics teachers notice and 
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what instructional decisions teachers make to further develop students’ mathematical 
fluency. The study reported here took an explanatory approach gathering student data as 
illustrations of fluency characteristics to help validate the Framework proposed by 
Cartwright (2018) (Table 1). Johnson and Christensen (2008) highlighted that an explanatory 
approach aims to “empirically test a model to determine how well the model fits the data” 
(p. 384). The intention of applying an explanatory approach was to discover if the set of 
characteristics formulated were observable and how well, as a set of observable features, 
they fit within student data. 

This paper reports on results from the school that participated as a pilot school to ‘road 
test’ the Characteristics of Fluency Framework. The primary school (approximately 300 
students) was located in a medium socio-economic (school ICSEA 1022) metropolitan area 
of Sydney. Seven classes of students participated in the study: A Kindergarten class (n=16), 
two Year 1/2 classes (n=35), a Year 3 (n=27), a Year 3/4 (n=23), a Year 4/5 (n=27) and a 
Year 6 class (n=32) (N=160 students).  

Instrument and Procedure 
Student responses to problem solving tasks were the source of data. Problem solving 

tasks that have an element of challenge for students were utilised for the study. These types 
of tasks increase opportunities to observe mathematical fluency in action as they allow 
students to choose and use procedures and strategies. Russo and Hopkins (2017) made a 
similar point in their research where the tasks needed to be “engaging for students, have 
multiple solution pathways, involve multiple mathematical steps and take considerable time 
to solve” (p. 22). The tasks chosen related to number concepts as the majority of prior 
research on fluency focuses on number sense or the four operations. For example, “The faces 
of this cube are numbered consecutively, what might the sum of the faces be?” Students’ 
oral (audio recordings), written and pictorial representations (work samples) were collected 
to support observation notes when analysing students’ mathematical fluency. The tasks were 
conducted as part of whole-class mathematics lessons implemented by the researcher. The 
researcher taught the lessons for consistency of delivery as a number of the tasks were used 
repeatedly across classes or year groups. Individual work samples (N=160) were collected 
from all students and audio recordings were taken of a random selection of students per class 
explaining their solutions (n=57).  

On a second visit to the school, one week later, the researcher taught another 
mathematics lesson in each class. During these follow-up lessons, students worked on a 
different task in small groups, recording their work on large sticky-note posters. The 
researcher used the “Explain Everything” iPad app to record randomly selected groups’ work 
as the students explained their thinking and solutions to the researcher. Only the analysis of 
the individual student work samples, recordings and observational notes (Lesson 1) will be 
discussed and reported on within this paper.  

Data analysis 
A deductive approach to data analysis was employed, looking for evidence that the 

characteristics of mathematical fluency presented in the Framework were identifiable in the 
students’ work sample data. All 160 student work samples (grouped and analysed by class) 
were indexed against the Framework using the pre-defined characteristics as a set of codes. 
Work samples were viewed numerous times and fluency characteristics that were visible 
were tallied and recorded against a copy of the Framework. For example, where there was 
evidence that the student had crossed-out work and recorded another response this was coded 
as ‘self-checking method’. The Framework was also used when analysing the transcripts of 
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the individual student audio recordings. A spreadsheet was used to organise the transcript 
data, comments were recorded and characteristics noted. Analysis of students’ use of 
diagrams and representations to display fluency has also been included as some 
characteristics were identifiable through different domains such as; written, spoken and 
drawn representations. Two student work samples are presented in Table 2 with analysis 
notes listing the characteristics of fluency that can be observed in each sample. 
Table 2 
Examples of how Individual Student written work samples were Analysed 

Students’ work samples Characteristics of fluency observable in the sample 

 

Student uses an accurate process to find solutions, efficient strategies 
for addition are visible, multiple solutions are given, an explanation 
of the findings is written (including noticing of the pattern), diagrams 
are used to show partitioning and lines are used to organise different 
solutions, evidence of self-correction in the writing is visible.   
Year 6 work sample 

 

Student uses diagrams as part of working out, numerical and 
symbolic representations are used to label the working out of a 
solution, evidence of efficient strategy can be seen in the use of a 
count-by-twos method for counting the legs, evidence of self-
correction (crossed-out hen) and words are used to write the 
solution.  
Kindergarten work sample 

Results 
The results from the individual work samples are represented in Tables 3, 4 and 5. During 

coding it was necessary to modify the wording of a number of the characteristics for clarity. 
For example, ‘Multiple strategies’ was removed as it was similar to ‘variety of strategies’. 
The term ‘appropriate strategy’ was interpreted as ‘efficient strategy’ - for the task.  These 
characteristics were further amended post analysis for future use in the broader research 
study to clarify these terms: ‘appropriate strategy’ (for the problem) and ‘efficient strategy’ 
(for the student’s stage of learning). ‘Transferring to other contexts’ was removed for the 
analysis as students were not provided with opportunities to solve further problems in new 
situations. Transference may be better observed over time by the classroom teacher.  

Analysis of Students’ Written Work Samples 
Data analysis and coding were recorded according to year/ class level and similar 

patterns in the results appeared, it was therefore decided to present the data holistically 
(Table 3). Similar characteristics of fluency were identified across all year levels with the 
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exception of ‘justifying strategy’ that was only present in Year 6 samples, and ‘making 
connections’ that was not identified until Year 3 samples. 
Table 3 
Percentage of Students’ Written Work Samples Displaying Characteristics (N=160) 

Strategic competence % Conceptual understanding % Adaptive reasoning % 

Variety of strategies/ 
ways 

25.6 Comprehension (understands the 
task) 

91.8 Justifying strategy or 
method (the why) 

1.2 

Choice of efficient 
strategy 

50.6 Making connections between 
concepts (known to unknown) 

23.1 Self-checking method 
(reasonableness) 

35.0 

Accurate process 
(articulation) 

60.0 [Flexible] use of numbers and 
their relationships 

44.3 Working through 
errors 

31.8 

(Ease of) mechanics- 
automaticity 

 Explanation of method (the how)  31.2   

Fluidity (switch 
between strategies) 

 Sharing strategies [with peers] 
(communicate) 

   

The majority of students (91.8%) across all year levels were able to comprehend the 
problem and 60% of students were able to use an accurate process. Although, only 50.6% of 
students were able to show evidence that they chose an efficient strategy to use in solving 
the task. Students who simply wrote a correct solution were unable to be coded as ‘choosing 
an efficient strategy’ as it was not clear if they had, for example, used a count-by-ones 
strategy to solve a more complex task. Additional characteristics also emerged that were not 
captured in the original Framework and are presented in Table 4.  
Table 4 
Percentage of Students’ Written Work Samples Displaying Characteristics not Identified in 
the Original Framework (N=160)  

Strategic competence % Conceptual understanding % Adaptive reasoning % 

Multiple solutions 40.6 Describes thinking/ 
findings*  

61.4 Locates a pattern in solutions 11.8 

    Makes generalisation/ justifies 
findings (why) 

1.2 

* The tasks implemented in K and Year 1/2 classrooms did not provide scope for students to describe their 
solutions therefore this data only relates to n=109 

During the lessons, the students were specifically encouraged to provide a written 
explanation of their method (31.2% in Table 3). In general, students were reluctant to write 
full sentences to support how they worked out their solutions. It was necessary to further 
refine the coded data regarding ‘explanation of methods’ as many of the students (61.6% 
Table 4) described their thinking or findings either instead of, or in addition to, writing an 
explanation of their method. As noted in both Table 3 and Table 4, only 1.2% of students 
were able to write about ‘why they chose their strategy’ or to ‘justify their findings’, further 
extending prompts may be required to be used by the teacher to ascertain these characteristics 
of fluency.  
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Table 5 
Percentage of Students’ Written Work Samples Displaying Domains Through Which 
Fluency was Communicated (N=160)  

Discourse/ language % Representation % Visualisation % 

Writing to support 
numerical/ visual work* 

76.2 Numerical and/or 
symbolic 

90.6 Use of colour to separate 
solutions 

15.6 

Use of high modality 
words e.g. always, must 

9.3   Use of lines/ sectioning off 
areas of work space 

21.8 

    Drawing of own diagram** 53.3 

* This number is inclusive of written words/ sentences that may have been unfinished or incorrect 
** Note that for the Year 1/2 and Year 3/4 tasks a diagram was provided and all students utilised the 
diagram; therefore, these data only relate to n=75 

From Table 5 it can be observed that students used a range of domains to show their 
fluency with the majority (90.6%) using numbers and/or symbols to represent their working 
and solutions. One-quarter of K-4 students drew pictures utilising more than one colour 
whereas the use of more mathematical diagrams, for example, tree diagrams, were more 
common in Years 4, 5 and 6 (40% of student samples). A number of characteristics could 
not be identified in the written work sample analysis as they need to be observed at a 
moment-in-time or communicated verbally, for example, automaticity, fluidity, and sharing 
strategies [with peers].  

Analysis of Students’ Verbal Descriptions 
From the audio recordings students’ automaticity with number knowledge was 

identifiable by the way they spoke about their strategies and solutions with accuracy and 
confidence, as were students’ abilities to flexibly use numbers and number relationships. For 
example, “So 6 plus 7 is 13, plus 8 is 21, and then plus 9 is 30 then plus 10 is forty and then 
plus 11 is 51” (Tobi, Year 6); and “So, this equals 7, but I knew that … so 6 … maybe 5 and 
1, that might equal another 6, and 6 plus 6 equals 12” (Alex, Year 1/2). 

The analysis of the transcripts also found that high modality words were used more 
frequently verbally compared with students’ written work samples:  

Elle:  Well would a pattern be the same, would it still be a pattern if I’m saying there’s a 15 in 
every [line] of the numbers? 

Researcher:  Right, so why is there 15 in every single one of them? 
Elle:  Because 8 and 7 are always in all of them    (Year 4/5 student) 

Clio:  I found out that if you add all the numbers together, then always, then you always get 
plus two       (Year 4/5 student) 

Molly:  So, what I’m doing is I’m going to first count how many little squares are in here. And 
then if there’s 16, but then I also know the answer that’s in this one, so then I know the 
answer will be the same in all the other ones.   (Year 3/4 student) 

Tom:  39 plus 6 equals 45 … plus 6 to 45 is 51 … plus 6 to 57 is the next answer, so they are 
all plus 6 

Researcher:  So why is the difference 6 each time? 
Tom:  That’s what we are going to work out!    (Year 6 student) 
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Discussion and Conclusion 
When comparing the coded data across year groups students in Kindergarten and Year 

1/2 (27%) were less able to use an accurate process compared with 75% of Year 3 to 6. This 
could be due to the tasks relying on students applying knowledge to an unfamiliar task, or 
could reflect students’ lack of exposure to tasks of this nature. These students may have 
shown procedural fluency if provided with straightforward number fact questions. However, 
if mathematical fluency involves understanding and knowing when and how to use 
mathematics appropriately, more open-ended task experiences are required. Despite the 
challenge of the tasks, students in all classes persevered and remained in-task for the entirety 
of the lesson, attempting to find multiple solutions. Anecdotally, students confident with the 
mathematics of the task wanted to work with their peers despite it being an individual task. 
Some students used an accurate process for the operation they chose, but inappropriate for 
the task. The accurate process indicates some level of fluency with numbers, however, 
knowing the mechanics without the understanding of when to use them is not fluency 
(Russell, 2000). The task design also impacted the students’ abilities to demonstrate their 
fluency. The Year 1/2 task was conceptually too difficult and many students were unable to 
find a solution. The tasks used with Years 4-6 involved a lower level of mathematics and 
therefore provided more space for students to spend time exploring solution patterns.  

The additional characteristic of ‘the use of high modality words’ that emerged during the 
analysis was of interest. Language development affects students’ ability to communicate 
their mathematical fluency. There is a “close relation between students’ reading skills and 
mathematical reasoning competence [where] specific reading comprehension strategies are 
also needed” for proficiency (Segerby & Chronaki, 2018, p. 4). Students observed as having 
mathematical fluency used high modality words, particularly when speaking and reasoning 
about their solutions. This aligns with Chapman’s (1997) findings where “as they become 
more certain of and confident with their mathematical meanings, so they establish a higher 
modality” (p. 170). Modality and the role language plays in the acquisition of mathematical 
fluency should be further investigated. 

From the analysis, in deciding if a student was ‘fluent’, they needed to be able to show 
evidence of the use and choice of an efficient strategy. Either by (a) showing numerically 
and/or symbolically how they came to their solution, the steps – a numerical answer alone 
was not enough; (b) using written words to explain how they worked out a solution; or (c) 
verbally explaining how they worked out their solution. Some characteristics were evident 
in verbal but not in written form, ideally audio recordings and written samples should be 
analysed together to gain a full picture of a student’s fluency. Students regarded as ‘fluent’ 
were able to use a range of representations and/or articulate verbally their strategies and 
solutions. Day, Stephens and Horne (2017) make similar observations regarding reasoning 
where students have the ability to “move fluidly between multiple representations” and have 
the “language and discourse to reason mathematically” (p. 655). Students observed as 
‘fluent’ demonstrated adaptive reasoning, in particular their ability to self-check and take a 
different tack by working through errors along the way.  

The Framework will continue to be refined as the students’ group task work samples and 
recordings are analysed. Future investigations will also test the relationships between the 
categories within the Framework, confirming or refining the interrelatedness of the three 
categories when and if mathematical fluency is present in students. For example, where 
evidence can be seen for a student displaying conceptual understanding and adaptive 
reasoning, does this equate to mathematical fluency? Do students need evidence in all three 
categories to be considered ‘fluent’? 
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